skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hammer, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. In introductory physics laboratory instruction, students often expect to confirm or demonstrate textbook physics concepts. This expectation is largely undesirable: labs that emphasize confirmation of textbook physics concepts are generally unsuccessful at teaching those concepts and even in contexts that do not emphasize confirmation, such expectations can lead to students disregarding or manipulating their data in order to obtain the expected result. In other words, when students expect their lab activities to confirm a known result, they may relinquish epistemic agency and violate disciplinary practices. We present a contrasting case where, we claim, confirmatory expectations can actually support productive disciplinary engagement. In this case study, we analyze the complex dynamics of students’ epistemological framing in a lab where students’ confirmatory expectations support and even generate epistemic agency and disciplinary practices, including developing original ideas, measures, and apparatuses to apply to the material world. Published by the American Physical Society2024 
    more » « less
  3. Young stellar objects (YSOs) are protostars that exhibit bipolar outflows fed by accretion disks. Theories of the transition between disk and outflow often involve a complex magnetic field structure thought to be created by the disk coiling field lines at the jet base; however, due to limited resolution, these theories cannot be confirmed with observation and thus may benefit from laboratory astrophysics studies. We create a dynamically similar laboratory system by driving a$$\sim$$1 MA current pulse with a 200 ns rise through a$$\approx$$2 mm-tall Al cylindrical wire array mounted to a three-dimensional (3-D)-printed, stainless steel scaffolding. This system creates a plasma that converges on the centre axis and ejects cm-scale bipolar outflows. Depending on the chosen 3-D-printed load path, the system may be designed to push the ablated plasma flow radially inwards or off-axis to make rotation. In this paper, we present results from the simplest iteration of the load which generates radially converging streams that launch non-rotating jets. The temperature, velocity and density of the radial inflows and axial outflows are characterized using interferometry, gated optical and ultraviolet imaging, and Thomson scattering diagnostics. We show that experimental measurements of the Reynolds number and sonic Mach number in three different stages of the experiment scale favourably to the observed properties of YSO jets with$$Re\sim 10^5\unicode{x2013}10^9$$and$$M\sim 1\unicode{x2013}10$$, while our magnetic Reynolds number of$$Re_M\sim 1\unicode{x2013}15$$indicates that the magnetic field diffuses out of our plasma over multiple hydrodynamical time scales. We compare our results with 3-D numerical simulations in the PERSEUS extended magnetohydrodynamics code. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025